

AVR1010: Minimizing the power consumption of
Atmel AVR XMEGA devices

Features
• Sleep modes
• Clock prescaling and source switching
• Power Reduction Registers
• RTC clock source
• State of digital I/O
• Watchdog
• Brown Out Detector
• JTAG interface

1 Introduction
The Atmel® AVR® XMEGA® devices are capable of achieving extremely low power
consumption, which is required by both portable electronics and other battery-
powered applications.

To reach the lowest possible power figures there are a few points to pay attention
to – it is not only the sleep mode that defines the power consumption, but also the
state of the I/O pins, the number of enabled peripheral modules and so on.

This application note describes what must be done to achieve the lowest possible
power consumption for XMEGA devices. Example code is also supplied, which
compiles with both GCC and IAR Embedded Workbench®.

Figure 1-1. The XMEGA devices can achieve powers that are barely measurable.

8-bit
Microcontrollers

Application Note

Preliminary

Rev. 8267B-AVR-12/10

2 AVR1010
8267B-AVR-12/10

2 Reducing the power consumption to a minimum
Though many factors affect the power consumption, some will naturally affect more
than others. Listed below are the most important factors, with recommendations and
considerations.

2.1 Operating voltage
The power consumption is proportional to the square of the device’s supply voltage,
which should therefore be kept as low as possible.

A reduction in supply voltage can lower the limit for the maximum system clock
frequency, thus increasing the time required in ACTIVE mode to execute a given
amount of code.

Minimize power consumption by using as low supply voltage as possible.

2.2 Active mode operation
In ACTIVE mode, i.e. when sleep modes are not used, the power consumption is
proportional to the system clock frequency. This means that if sleep modes are not
used, the device should be run at the lowest possible system clock frequency to
minimize the power consumption.

Minimize power consumption by keeping the clock frequency as low as possible if
sleep modes are not used.

2.3 Sleep modes
In most applications it is desirable to minimize the power consumption, but not to
reduce the system clock frequency – mainly to ensure fast processing and quick
response of the system/product. In such applications one can use the “sleep modes”
of the Atmel® AVR® XMEGA® to put the device in a low power state when there is
nothing to process. The main principle is then to run as fast as possible, and sleep as
much as possible. Running as fast as possible reduces the effect of static power
consumption (i.e. independent of clock frequency), e.g. due to non-volatile memory
being enabled in ACTIVE mode.

The power consumption and operation of peripherals in sleep depends on which
sleep mode is used. Table 2-1 shows the characteristics of the different sleep modes
available for XMEGA devices. An application may switch between sleep modes
during operation, depending on which mode is the most suitable at the time.

 AVR1010

 3

8267B-AVR-12/10

Table 2-1: Available sleep modes for XMEGA.

The three most commonly used modes are IDLE, POWER-SAVE and
POWER-DOWN:

• In IDLE, most peripherals are still operating – only the Atmel® AVR® CPU core and
non-volatile memories (Flash and EEPROM) are stopped. The DMA controller and
Event system are still active in this mode, allowing for e.g. AD conversions and
transfers via the USART to continue, even though the CPU is not operating. The
device can be woken up by all interrupts.

• In POWER-SAVE, the low frequency Real Time Clock (RTC) timer is still running
while the CPU and most other peripherals are stopped. The RTC is commonly
used to wake the device up at timed intervals. Because the system clock source is
stopped in this sleep mode, wake-up takes a bit longer than for IDLE since the
system clock must stabilize before operation.

• POWER-DOWN is the deepest sleep mode. In this mode most of the device
peripherals are stopped. The device is unable to wake itself up from this mode
since both the peripheral clock and RTC are disabled. This mode therefore relies
on external input, e.g. asynchronous pin interrupts or TWI, to wake the device up.
There are exceptions to this rule: XMEGAs with the battery backup module and
32-bit RTC. The RTC in these devices will run regardless of the sleep-mode.

The XMEGA family also supports two additional sleep-modes which are useful when
a short wake-up time is needed:

• STANDBY, which is POWER-DOWN with system clock source still running.
• EXTENDED STANDBY, which is POWER-SAVE with system clock source still

running.
These two sleep-modes do not give as low power consumption as POWER-DOWN
and POWER-SAVE respectively, but are useful if fast response is vital to the
application.

Note that asynchronous port interrupts and TWI address matches can wake the
device up from all sleep modes. Refer to the device manual for further information
about these sleep modes and operation of them.

4 AVR1010
8267B-AVR-12/10

Minimize power consumption by using the deepest allowable sleep modes at any
time, and running as fast as possible to minimize time spent in ACTIVE mode.

2.4 Clock Prescaling
Although it is recommended to run the CPU as fast as possible to minimize the time
spent in ACTIVE mode, there are situations where it is better to reduce the clock rate.
These situations commonly involve waiting in ACTIVE or IDLE mode for something
that takes a fixed amount of time, e.g. serial communication. In these cases, one
should avoid generating higher CPU and peripheral clock frequencies than are
needed for the active peripherals. This may be achieved by using clock prescaling,
which can be changed without causing glitches in the clock signal.

If prescaling is done internally in several peripherals, power can be conserved by
prescaling with the largest common factor as early as possible in the clock distribution
chain. This principle is illustrated in Figure 2-1.

Figure 2-1: Peripherals without and with common prescaling by largest factor.

Peripheral w/
prescaling by

256

Peripheral w/
prescaling by

8

Peripheral w/
prescaling by

64

Prescaling by
8

Peripheral w/
no prescaling

Peripheral w/
prescaling by

8

Peripheral w/
prescaling by

32

System
clock

Peripheral
clock

No
prescaling

Peripheral
clock

System
clock

Note that since the prescaling also affects the CPU clock, it might not always be
desirable to perform this common prescaling in ACTIVE mode because computations
will take longer.

Minimize power consumption by actively using prescaling, especially when waiting in
ACTIVE or IDLE mode.

2.5 Clock Source Switching
One should avoid generating higher system clock rates than are actually needed. In
the ideal case, prescaling is unnecessary. This can be achieved by switching
between clock sources.

As an example, it is preferable to generate a 16MHz system clock by use of the PLL
with the 2MHz RC oscillator as reference, rather than the 32MHz RC oscillator with
prescaling to 16MHz. External clock sources may also be a good choice, especially if
they are already available in the system and therefore come with no extra “cost”.

The wake-up delay for the device depends on which clock source is used for the
system clock. One way to reduce this delay is to switch between clock sources so
that the device goes to sleep and wakes up with a fast-responding clock source.

 AVR1010

 5

8267B-AVR-12/10

Minimize power consumption by switching clock sources rather than relying on
prescaling alone for reducing clock rates.

2.6 Wake-Up Delays
When the device wakes up from sleep modes deeper than IDLE (with the exception
of the two STANDBY-modes), the system clock source must stabilize before the CPU
starts to operate. This introduces a short delay which depends on the selected clock
source. If an internal RC oscillator or external clock is used, the start-up delay is 6
cycles. This is in addition to the RC oscillator start-up time. If the XTAL oscillator is
used, the start-up delay is configurable. If frequency stability is wanted, it is
recommended with start-up delays of 1,000 cycles for ceramic resonators and
16,000cycles for quartz crystals respectively. This is in addition to the oscillator start-
up time, which will depend on the resonator and load capacitances.

In addition, there is a 13 cycle minimum delay before an Interrupt Service Routine
(ISR) starts executing after wake-up. This is due to, e.g. the program counter being
pushed on stack and the jump to the ISR.

During the start-up delay the power consumption is close to the power consumption in
IDLE, and thus represents “inefficient” power. If possible, it is therefore recommended
to wake up as seldom as possible and rather “do more” every time the device wakes
up.

To minimize the wake-up delay and conserve power, use an RC oscillator or external
clock source, and wake up as seldom as possible.

2.7 Power Reduction Registers
Most peripherals and internal modules can be individually stopped to avoid that these
draw power in ACTIVE mode and in IDLE sleep. This is done by setting their
respective bits in the Power Reduction Registers (PRR), which causes them to be
disconnected from the peripheral clock domain. It is required to disable modules and
peripherals via their respective control registers before setting their PRR bit, for the
Power Reduction to be effective. Some modules must be reinitialized after clearing
their PRR bit. Please refer to the sections about the individual PRR-bits in the
datasheet manual for more information.

In POWER-SAVE and POWER-DOWN the modules are stopped regardless of the
PRRs, since the peripheral clock domain is disabled.

To minimize power consumption, use the PRRs to disable peripherals and modules
that are not used.

2.8 RTC Clock Source
One of the reasons for using IDLE, POWER-SAVE and EXTENDED STANDBY is
that the RTC and its clock are active in these sleep modes. The RTC is commonly
used to wake the device up at timed intervals.

For most Atmel® AVR® XMEGA-families, three different oscillators can be used to
clock the RTC: An external 32kHz crystal, the internal 32kHz RC oscillator and the
internal 32kHz Ultra Low Power (ULP) oscillator. In all cases, a prescaled 1kHz clock
signal is available and should be used for reduced power consumption. For the
external 32kHz crystal oscillator, a special low power mode is also available
(X32KLPM).

6 AVR1010
8267B-AVR-12/10

It is recommended to use an external 32kHz crystal with X32KLPM enabled. This
gives lower power consumption than the ULP, yet greater accuracy than the internal
RC oscillator. This oscillator may also be used as the system clock source, if such a
low frequency is acceptable.

Table 2-2. Examples of accuracy and current consumption for RTC w/ clock sources.
Oscillator Accuracy3 Current consumption1,3

ULP +/- 30% 1µA

RC32k +/- 1% 30µA

TOSC (32 kHz XTAL)2 +/- 0,001% (10 ppm) 0.6µA

Notes: 1. At 3V operating voltage.
2. Depends on e.g. quality of crystal.
3. Please refer to the datasheet for exact values and conditions, the values stated

here are meant as guideline only.

For Atmel® AVR® XMEGA-families with the battery backup module and 32-bit RTC,
only the 32kHz crystal oscillator may be used as clock source. In these devices, the
RTC is left running regardless of sleep.

Minimize power consumption by clocking the RTC at 1kHz with an external crystal in
low power mode.

2.9 State of Digital I/O Pins
All digital I/O pins are by default floating to avoid hardware conflicts. However, since
the pins have digital input buffers it is important to ensure that the level on an I/O pin
is well-defined to avoid sporadic internal switching and leakage. The leakage caused
by floating I/O is relatively small and is mainly observable in sleep, but can be
minimized by ensuring that the state of the pins is either high or low.

If a pin is connected to an analog source, the digital input buffer on that pin should be
disabled even if it is not configured as an input. This is done by use of the PINnCTRL
registers for the individual ports. Please refer to the device manual for information on
how to do this configuration.

To minimize power consumption, enable pull-up or -down on all unused pins, and
disable the digital input buffer on pins that are connected to analog sources.

2.10 Virtual Port Registers
To minimize the time spent in ACTIVE mode, virtual port registers can be used. This
allows for single-cycle access with I/O memory specific instructions like IN, OUT and
bit manipulation for the registers DIR, IN, OUT and INTFLAGS for up to four I/O ports.

Use the Virtual Port registers for I/O port access to minimize power consumption.

2.11 General Purpose I/O Registers
Another way to minimize the time spent in ACTIVE mode is to use the GPIO registers
for storage of variables. This is also due to the possibility of single-cycle access with
I/O memory specific instructions.

 AVR1010

 7

8267B-AVR-12/10

Note that the GPIO registers are defined as volatile, so temporary variables should in
some cases be used when manipulating variables stored in these registers:
Otherwise, the performance gain will be lost.

Use the General Purpose I/O registers for variable storage to minimize power
consumption.

2.12 Watchdog
The Watchdog is basically a timer with a separate clock source. It will, if enabled,
contribute to the power consumption in sleep. The watchdog can only be clocked by
the internal 32kHz Ultra Low Power (ULP) oscillator, prescaled to 1kHz.

To minimize the power consumption, disable the Watchdog.

2.13 Brown Out Detector
The purpose of the Brown Out Detector (BOD) is to ensure that the device is not
operating at a too low voltage. It is highly recommended to use the internal BOD to
ensure that the device always operates within specification.

However, during sleep the device is “not operating”, or rather, it is not executing code.
For this reason, the BOD can be configured separately for ACTIVE/IDLE and sleep
modes. This allows for the BOD to be enabled only in ACTIVE and IDLE mode. All
configuration of the BOD is done with the device fuses.

To further reduce power consumption, the BOD may be run in sampled mode. The
sample rate is approximately 1kHz, as it is clocked from the prescaled ULP oscillator.
The BOD cannot detect voltage dips between samples in this mode, so it should only
be used in applications with slowly varying operating voltages, such as battery-
powered ones.

Disable the BOD - or better, disable it while in sleep - to reduce power consumption.
Use sampled mode if only slow changes in operating voltage are likely.

2.14 JTAG interface and On-Chip Debugging
The JTAG interface is used for programming and debugging, but has no function
during operation of an end-product. It is clocked and active during sleep if the On-chip
Debugging (OCD) feature is enabled. The OCD and JTAG interface should therefore
be disabled if it is not needed.

The OCD can be disabled in fuses, while the JTAG interface can be disabled both in
fuses and in software. Disabling the JTAG in software ensures that the device can be
reprogrammed because the JTAG interface is re-enabled upon RESET.

Alternatively, the PDI interface can be used for programming and debugging. In this
case the JTAG interface may not be required at all, and may be disabled by fuses.
The PDI interface also works in all sleep modes.

To minimize power consumption, disable the OCD and the JTAG interface.

2.15 Flash and EEPROM Power Reduction Modes
With the Atmel® AVR® XMEGA® NVM (Non-Volatile Memory) controller, it is possible
to enable power reduction modes for the EEPROM and Flash. In these modes, the
EEPROM and the currently unused section of Flash (i.e., application or boot section)

8 AVR1010
8267B-AVR-12/10

are powered down in ACTIVE mode, just as they are in any sleep mode. These
power reduction modes will not affect power consumption in sleep.

If the CPU attempts to access a non-volatile memory with power reduction mode on,
the CPU is halted for a time interval corresponding to wake-up from IDLE sleep while
the memory is re-activated.

NB: There is an errata regarding Flash power reduction mode and sleep. For the
affected devices, the workaround is to disable the Flash power reduction mode before
entering sleep, then enabling it again on wake-up. Power consumption in sleep is not
affected by this.

Enable power reduction mode for EEPROM and Flash to reduce power consumption
in ACTIVE mode.

2.16 Writing to EEPROM
If more than one byte is to be written to EEPROM, one should make use of the
EEPROM page buffer rather than doing byte-wise writes. This is because it takes just
as long to write one byte as it takes to write an entire page to EEPROM. If, e.g., two
bytes are to be written, byte-wise writing will take twice as long as necessary. Since
the current consumption also increases during EEPROM writing, this gives a “double
penalty”.

To minimize power consumption, use page-wise writing to EEPROM rather than byte-
wise.

3 Code Examples
Six code examples are supplied with this application note. The main code files for
these are:

xmega_power_consumption.c

xmega_sleep_example.c

xmega_rtc32_power_consumption.c

xmega_rtc32_sleep_example.c

xplain_power_consumption.c

xplain_sleep_example.c

These are respectively meant for three different setups:

• Generic XMEGA, w/ I/O pins left floating
• XMEGA w/ battery backup system, 32-bit RTC and only 32kHz crystal connected

(e.g. A3B-family)
• Xplain evaluation board (ATxmega128A1)
The differences between these setups are the RTC driver and clock source, plus
some tweaks which are specific for the Xplain evaluation board.
For the generic setup, the ULP is used as clock source for the RTC. A 32kHz crystal
is used in the other setups. Note that the latter is mandatory for operation of the 32-bit
RTC.

3.1 Power Consumption
All the power_consumption.c examples simply step through different sleep modes at
timed intervals. This is meant to allow for simple verification of the power

 AVR1010

 9

8267B-AVR-12/10

consumption for the different Atmel® AVR® XMEGA® devices. The code steps through
the following modes, staying for 8 seconds in each:

• ACTIVE
• IDLE
• POWER-SAVE
• POWER-DOWN
Note that the device will stay in POWER-DOWN, since an external interrupt is
required to wake the device up from this sleep mode.

3.2 Sleep Example
All the sleep_example.c examples are meant as “code skeletons”. By default, the
device is woken up at 5 second intervals, held in ACTIVE for half a second, then put
to sleep in POWER-SAVE or POWER-DOWN mode. The user may build on this
example for his/her application.

4 Sleep manager

4.1 Purpose
For this application note, a sleep manager has been implemented. Centralized control
of sleep is necessary in applications that consist of several firmware modules that
require different sleep modes depending on their status or activity level. Otherwise,
one would risk that the firmware modules disrupted each other’s operation.

4.2 Operation
The sleep manager resides in sleepmgr.c, sleepmgr.h and config_sleepmgr.h,
and can be accessed via the following four functions:

void SLEEPMGR_Init(void);

void SLEEPMGR_Lock(SLEEPMGR_mode_t mode);

void SLEEPMGR_Unlock(SLEEPMGR_mode_t mode);

void SLEEPMGR_Sleep(void);

Prior to use, the sleep manager must be initialized to ensure correct operation.

It then keeps track of which sleep mode is allowable by the use of locks. This is
simply a list of values, with a one-to-one correspondence with a list of sleep modes
that are defined at compile-time. The firmware modules may individually lock and
unlock the sleep modes (increase/decrease the locks’ values) to prevent the sleep
manager from putting the device in “too deep” sleep, i.e., modes that would interfere
with the modules’ operation.

When the sleep manager is requested to put the device to sleep, it searches through
the locks for the first non-zero value. The device is then put to sleep in the mode
which this lock corresponds to. Consequently, the order of the locks must be such
that the deeper sleep modes come later. If no locks have been set after initialization,
the sleep manager will default to the deepest sleep mode. Interrupts are disabled to
prevent the locks from changing during this search. Any pending interrupts will cause
the device to instantly wake up again.

10 AVR1010
8267B-AVR-12/10

Note that the main loop of the application should be responsible for requesting the
sleep manager to put the device to sleep, as shown in Figure 4-1.

Figure 4-1: Suggested use of the sleep manager in main().

main()

Other initialization
and setup.

SLEEPMGR_Init()

Handle pending
data/events.

SLEEPMGR_Sleep()

Main loop

If an interrupt occurs while the sleep manager is about to put the device to sleep, it
will instantly wake up again and execute the corresponding ISR. Any update of the
locks must then occur in the ISR to ensure that the locks are set before the sleep
manager is requested to put the device to sleep again. A general example of an ISR
is shown in Figure 4-2.

Note that the sleep modes must also be unlocked when the firmware module is either
done with its task or it locks a different sleep mode.

Figure 4-2: Example use of the sleep manager in an ISR.

ISR

SLEEPMGR_Lock(SLEEPMGR_IDLE)

Initialize firmware
module.

reti()

 AVR1010

 11

8267B-AVR-12/10

The list of sleep modes is defined in config_sleepmgr.h. By default, the sleep
manager supports the following modes (in the order listed):

• Idle – SLEEPMGR_IDLE
• Extended standby – SLEEPMGR_ESTDBY
• Power-save – SLEEPMGR_SAVE
• Standby – SLEEPMGR_STDBY
• Power-down – SLEEPMGR_DOWN
If your application does not need all sleep modes, the list should be modified to save
both memory and execution time. Refer to the configuration file (config_sleepmgr.h)
for information on how to modify the list.

5 Low Power Initialization
For convenience, a function that disables all the peripherals/modules and enables
pull-up on all available I/O pins is included. This puts an Atmel® AVR® XMEGA® in the
least power consuming configuration, with the exception of EEPROM and Flash
power reduction modes, when nothing but VCC and GND is connected.

The function, LOWPOWER_Init(), supports all the different XMEGA families (A1, A3,
A3B, A4) and resides in lowpower.c, lowpower.h and lowpower_macros.h.

Since this function is meant for XMEGAs with floating I/O pins, some custom
configuration may be necessary for measurement in other setups. Refer to
lowpower_macros.h for the actual example code.

6 Measurement Setup
The supplied code examples are meant for current measurements on either the
Xplain board, or in a setup where only VCC, GND and alternatively an external crystal
are connected to the device (I/O pins left floating). If the setup differs from these, it
may be necessary to change the pin configurations. Special considerations are noted
below.

6.1 Xplain Board
To measure on the Xplain evaluation board, the following modifications are necessary
to reduce power consumption:

• Remove all jumpers from the board
• Enable pull-down on pin 3 of PORTQ (disables audio amplifier)
• Disable the input buffer on pin 1 of PORTB (potentiometer)
The two last points are done in the Xplain-specific example code. The Xplain board
features a 32kHz crystal, which is used to clock the RTC to minimize power
consumption.

Current measurements are done by connecting an Ampere-meter between the points
named IXM+ and IXM-. The shunt located between these measurement points must
be removed. The location of the measurement points and shunt is shown in Figure 6-
1.

12 AVR1010
8267B-AVR-12/10

Figure 6-1: Location of IXM and shunt on Xplain board.

6.2 XMEGA with 32-Bit RTC

Atmel® AVR® XMEGA® with the battery backup module and 32-bit RTC only allow for
the external 32kHz crystal oscillator to be used as clock source for the RTC. This
crystal must therefore be connected for wake-up at timed intervals to be possible.

8267B-AVR-12/10

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2010 Atmel Corporation. All rights reserved. / Rev.: CORP0XXXX

Atmel® logo and combinations thereof, and others are registered trademarks of Atmel Corporation or its subsidiaries. Other terms and
product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

